Электричество в живой природе. Презентация

Подписаться
Вступай в сообщество «hatewall.ru»!
ВКонтакте:

Знали ли Вы, что некоторые растения используют электричество, а некоторые виды рыб ориентируются в пространстве и оглушают добычу с помощью электрических органов?

: В издании «Nature» шла речь о том, как в растениях передаются электрические импульсы. В качестве ярких примеров на ум сразу приходят венерина мухоловка и мимоза стыдливая, у которых движение листьев вызывается электричеством. Но существуют и другие примеры.

«Нервная система млекопитающих передает электрические сигналы со скоростью до 100 метров в секунду. Растения живут в более медленном режиме. И хотя у них нет нервной системы, некоторые растения, такие как мимоза стыдливая (Mimosa pudica ) и венерика мухоловка (Dionaea muscipula ), используют электросигналы, провоцирующие быстрое движение листьев. Передача сигнала в этих растениях достигает скорости 3 см в секунду - и эта скорость сопоставима со скоростью нервных импульсов в мышцах . На странице 422 данного выпуска , автор Мусави и его коллеги исследуют интересный и не до конца понятный вопрос о том, как растения генерируют и передают электрические сигналы . Авторы называют два протеина, схожих с глутаматными рецепторами, которые являются важнейшими компонентами процесса индукции электрической волны, провоцируемой ранением листа. Она распространяется на соседние органы, заставляя их усиливать защитные реакции в ответ на потенциальную атаку травоядных».

Кто бы мог подумать, что, срезая лист, можно спровоцировать электрический сигнал? Эксперименты над растением резуховидка Таля продемонстрировали отсутствие реакции при воздействии на лист , однако при поедании листа возникал электрический сигнал, распространяющийся со скоростью 9 см в минуту.

«Передача электрического сигнала была наиболее эффективна в листьях, расположенных непосредственно над или под раненным листом, - отмечается в статье. – Эти листья соединены между собой сосудистым руслом растения, по которому передается вода и органические компоненты, а также отлично передаются сигналы на дальние расстояния» . Полученный сигнал включают в гене защитные компоненты. «Эти невероятные наблюдения отчетливо демонстрируют, что генерация и передача электрического сигнала играет важнейшую роль в инициации защитных реакций в отдаленных объектах при нападении травоядных».

Авторы оригинальной статьи не затрагивали тему эволюции, если не считать предположения о том, что «глубоко законсервированная функция этих генов, возможно , является связующим звеном между восприятием повреждений и периферийными защитными реакциями». Если это так, что эта функция, должно быть «существовала еще до расхождения в развитии животных и растений».

Электрические рыбки : Два новых вида электрических рыб были найдены в бассейне реки Амазонка, однако они оснащены электричеством по-разному. Одна из них, как и большинство остальных электрических рыб, двухфазна (или является источником переменного тока), а другая – монофазна (является источником постоянного тока). В одной из статей издания «Science Daily» рассматривались эволюционные причины, по которым это устроено именно так, и интересно то, что «эти хрупкие рыбки производят импульсы всего в несколько сотен милливольт с помощью органа, который немного выступает из волокнистого хвоста». Этот импульс слишком слаб, чтобы убить жертву, как это делает знаменитый электрический угорь, однако эти импульсы читаются представителями других видов, и используются представителями противоположного пола для общения. Рыбки используют их для «электролокации» в сложной водной среде ночью» . Что касается их эволюции, то эти две рыбы настолько похожи, что их относят к одному виду, и единственным различием является разница в электрической фазе их сигналов.

Существует огромное количество способов получать информацию об окружающем мире: прикосновение, взгляд, звук, запах, а теперь еще и электричество. Мир живой природы – это чудо общения между отдельными организмами и их окружением. Каждый орган чувств тонко сконструирован и несет огромную пользу для организма. Утонченные системы не являются результатом слепых неконтролируемых процессов. Мы верим, что если рассматривать их, как системы, созданные в соответствии с разумным замыслом, это ускорит процесс исследования, поможет искать понимания высшего замысла и имитировать их, чтобы усовершенствовать сферу инженерии. А настоящим препятствием в развитии науки является такое предположение: «О, этот организм эволюционировал только потому, что он эволюционировал». Это усыпляющий подход, обладающий снотворным воздействием.

Мы пользуемся им ежедневно. Оно является частью нашей повседневной жизни, а очень часто природа этого явления неизвестна нам. Речь идет об электричестве.

Мало кому известно, что этот термин появился без малого 500 лет назад. Английский физик Уильям Гильберт исследовал электрические явления и заметил, что многие предметы, подобно янтарю, после натирания притягивают к себе более мелкие частицы. Поэтому в честь ископаемой смолы он назвал это явление электричеством (от. лат. Electricus – янтарный). К слову сказать, задолго до Гильберта такие же свойства янтаря заметил древнегреческий философ Фалес и описал их. Но право называться первооткрывателем все же досталось Уильяму Гильберту, потому что в науке есть традиция – кто первый начал изучать, тот и является автором.

Люди которые приручили электричество

Однако дальше описаний и примитивных исследований дело не пошло. Только в XVII–XVIII веках вопрос об электричестве получил существенное освещение в научной литературе. Среди тех, кто после У. Гильберта занимался изучением этого явления, можно назвать Бенджамина Франклина, который известен не только своей политической карьерой, но и исследованиями атмосферного электричества.

Именем французского физика Шарля Кулона названа единица измерения электрического заряда и закон взаимодействия электрических зарядов. Не меньший вклад внесли и Луиджи Гальвани, Алессандро Вольт, Майкл Фарадей и Андре Ампер. Все эти фамилии известны еще со школы. В области электричества проводил свои исследования и наш соотечественник – Василий Петров, который в начале XIX века открыл вольтову дугу.

«Вольтова дуга»


Можно сказать, что, начиная с этого времени, электричество перестает быть происками природных сил и постепенно начинает входить в жизнь людей, хотя и по сей день остаются тайны в этом явлении.

Однозначно можно сказать: если бы электрические явления не существовали в природе, то не исключено, что до сих пор не было бы открыто ничего подобного. В древние времена они пугали неокрепший ум человека, но со временем он попытался приручить электричество. Результаты этих действий таковы, что уже нельзя представить жизнь без него.

Человечество смогло «приручить» электричество

Как проявляется электричество в природе?

Естественно, когда разговор заходит о природном электричестве, то сразу же вспоминаются молнии. Впервые их изучением занялся упомянутый выше американский политик. К слову сказать, в науке бытует версия, что молнии оказали существенное влияние на развитие жизни на Земле, так как биологами установлен факт: для синтеза аминокислот нужно электричество.

Молния — мощный разряд электричества



Всем знакомо ощущение, когда при прикосновении к кому-то или чему-либо возникает электрический разряд, доставляющий небольшие неудобства. Это проявление наличия электрических токов в человеческом организме. Между прочим, нервная система функционирует за счет электрических импульсов, которые поступают от раздраженного участка в мозг.

Внутри нейронов мозга сигналы передаются электрическим путем



Но не только человек генерирует в себе электрические токи. Многие обитатели морей и океанов способны вырабатывать электричество. Например, электрический угорь способен создать напряжение до 500 вольт, а мощность заряда ската достигает 0,5 киловатт. К тому же отдельные виды рыб используют электрическое поле, которое создают вокруг себя, с помощью чего легко ориентируются в мутной воде и на глубине, куда не проникает солнечный свет.

Электрический угорь реки Амазонки


Электричество на службе человека

Все это стало предпосылками для применения электричества в бытовых и промышленных целях человека. Уже с XIX века оно стало входить в постоянное применение и, в первую очередь, для освещения помещений. Благодаря ему, появилась возможность создать оборудование для передачи информации на огромные расстояния при помощи радио, телевидения и телеграфа.

Электричество для передачи информации

Сейчас сложно представить жизнь без электрического тока, ведь все привычные приборы работают исключительно от него. Видимо, это послужило толчком для создания накопителей электрической энергии (батареек) и электрогенераторов для тех мест, куда высоковольтные столбы пока не добрались.

Ко всему прочему, электричество является двигателем науки. Многие приборы, которые используются учеными для изучения окружающего мира, тоже работают от него. Постепенно электроэнергия завоевывает космос. Мощные батареи стоят на космических кораблях, а на планете возводятся солнечные батареи и устанавливаются ветряки, которые получают энергию от природы.

Электричество двигатель науки


И все же это явление до сих пор покрыто тайной и мраком для многих людей. Даже, несмотря на школьное образование, некоторые признаются в том, что не до конца понимают принципы работы электричества. Также есть и те, кто путается в терминах. Они не всегда способны объяснить, в чем разница между напряжением, мощностью и сопротивлением.

«Электричествов живых организмах»


Что такое, кем открыто,что собой представляет электричество

Впервые на электрическийзаряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарьшерстью, после таких простых движений янтарь стал обладать свойством,притягивать мелкие предметы. Это свойство больше походит не на электрическиезаряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этимидвумя явлениями.

В 1747 - 53 Б. Франклинизложил первую последовательную теорию электрических явлений, окончательноустановил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в.началось количественное изучение электрических и магнитных явлений. Появилисьпервые измерительные приборы - электроскопы различных конструкций,электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установилизакон взаимодействия неподвижных точечных электрических зарядов (работыКавендиша были опубликованы лишь в 1879). Этот основной закон электростатики(Кулона закон) впервые позволил создать метод измерения электрических зарядовпо силам взаимодействия между ними.

Следующий этап в развитиинауки об Э. связан с открытием в конце 18 в. Л. Гальвани «животногоэлектричества»

Главным ученым в изученииэлектричества и электрических зарядов является Майкл Фарадей. С помощью опытовон доказал, что действия электрических зарядов и токов не зависят от способа ихполучения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждениеэлектрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти егоработы положили начало электрохимии.

И так, что же такоеэлектричество. Электричество - это совокупность явлений, обусловленныхсуществованием, движением и взаимодействием электрически заряженных тел иличастиц. Явление электричество можно встретить почти везде.

К примеру, если сильнопотереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочкибумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. Притрении янтаря, пластмассы и ряда других материалов в них возникает электрическийзаряд. Само слово «электрический» происходит от латинского слова electrum,означающего «янтарь».

Откуда же беретсяэлектричество

Все окружающие насобъекты содержат миллионы электрических зарядов, состоящих из частиц,находящихся внутри атомов - основы всей материи. Ядро большинства атомоввключает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрическогозаряда, в то время как протоны несут в себе положительный заряд. Вокруг ядравращаются еще одни частицы - электроны, имеющие отрицательный заряд. Какправило, каждый атом имеет одинаковое количество протонов и электронов, чьиравные по величине, но противоположные заряды уравновешивают друг друга. Врезультате мы не ощущаем никакого заряда, а вещество считается незаряженным.Однако, если мы каким-либо образом нарушим это равновесие, то данный объектбудет обладать общим положительным или отрицательным зарядом в зависимости оттого, каких частиц в нем останется больше - протонов или электронов.

Электрические зарядывлияют друг на друга. Положительный и отрицательный заряды притягиваются друг кдругу, а два отрицательных или два положительных заряда отталкиваются друг отдруга. Если поднести к предмету отрицательно заряженную леску, отрицательныезаряды предмета переместятся на другой его конец, а положительные заряды,наоборот, переместятся поближе к леске. Положительные и отрицательные зарядылески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процессназывается электростатической индукцией, и о предмете говорят, что он попадаетв электростатическое поле лески.

Что такое, кем открыто,что собой представляют живые организмы

Живые организмы - главныйпредмет изучения в биологии. Живые организмы не только вписались в существующиймир, но и изолировали себя от него при помощи специальных барьеров. Среда, вкоторой образовались живые организмы, является пространственно – временнымконтинуумом событий, то есть совокупностью явлений физического мира, котораяопределяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрениявсе организмы распределяются по разным группам и категориям, что составляетбиологическую систему их классификации. Самое общее их деление на ядерные ибезъядерные. По числу составляющих организм клеток их делят на одноклеточные имногоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы,т.е. на растения и животные действуют абиотические факторы среды (факторынеживой природы), особенно температура, свет и увлажненность. В зависимости от влиянияфакторов неживой природы, растения и животных делят на различные группы и у нихпоявляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано,живые организмы распределяются на большое количество. Сегодня мы рассмотримживые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температуройтела (теплокровные);

с непостояннойтемпературой тела (хладнокровные).

Организмы с непостояннойтемпературой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постояннойтемпературой тела (птицы, млекопитающие).

Чем связаны физика иживые организмы

Понимание сущности жизни,ее возникновения и эволюции определяет все будущее человечества на Земле каквида живого. Конечно, в настоящее время накоплен огромный материал,осуществляется его тщательное изучение, особенно в области молекулярнойбиологии и генетики, есть схемы или модели развития, есть даже практическоеклонирование человека.

Более того, биологиясообщает множество интересных и важных подробностей живых организмах, упускаячто-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоитиз атомов и молекул, для которых уже получены количественные и в целомправильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физикабыла и остается важным фактором общего развития изучения живых организмов вцелом. В этом смысле физика как феномен культуры, а не только как областьзнания, создает наиболее близкое для биологии социокультурное понимание.Вероятно, именно в физическом познании отражены стили мышления.Логико-методологические аспекты познания и самой естественной науки, какизвестно, почти целиком основаны на опыте физических наук.

Поэтому задача научногопознания живого, может быть, и состоит в обосновании возможности примененияфизических моделей и представлений к определению развития природы и обществатакже на основе физических закономерностей и научного анализа получаемых знанийо механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В.Волькенштейн, «в биологии как науке о живом возможны только два пути: либопризнать невозможным объяснение жизни на основе физики и химии, либо такоеобъяснение возможно и его надо найти, в том числе на основе общихзакономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различныхклассах живых организмах

В конце XVIII веказнаменитые ученые Гальвани и Вольта обнаружили электричество у животных.Первыми животными, на которых ученые делали опыт, чтобы подтвердить своеоткрытие, были лягушки. На клетку воздействуют различные факторы внешней среды- раздражители: физические - механические, температурные, электрические;

Электрическая активностьоказалась неотъемлемым свойством живой материи. Электричество генерируетнервные, мышечные и железистые клетки всех живых существ, однако наиболееразвита эта способность у рыб. Рассмотрим явление электричество у теплокровныхживых организмах.

В настоящее время известно,что из 20 тыс. современных видов рыб около 300 способны создавать ииспользовать биоэлектрические поля. По характеру генерируемых разрядов такиерыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятсяпресноводные южноамериканские электрические угри, африканские электрическиесомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды:угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупныхморских скатов невысоко, поскольку морская вода является хорошим проводником,но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа,например, мормирус и другие представители отряда клюворылообразных не излучаютотдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичныхсигналов (импульсов) высокой частоты, этого поля проявляется в виде такназываемых силовых линий. Если в электрическое поле попадает объект,отличающийся по своей электропроводности от воды, конфигурация поля изменяется:предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей- рассредоточивают. Рыбы воспринимают эти изменения с помощью электрическихрецепторов, расположенных у большинства рыб в области головы, и определяютместонахождение объекта. Таким образом эти рыбы осуществляют подлиннуюэлектрическую локацию.

Почти все они охотятсяпреимущественно ночью. Некоторые из них обладают плохим зрением, поэтому впроцессе длительной эволюции и выработался у этих рыб такой совершенный способдля обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемыеэлектрическими рыбами при ловле добычи и обороне от врагов, подсказываютчеловеку технические решения при разработке установок для электролова иотпугивания рыб. Исключительные перспективы открывает моделированиеэлектрических систем локации рыб. В современной подводной локационной техникепока не существует систем поиска и обнаружения, которые работали бы по образцуи подобию электролокаторов, созданных в мастерской природы. Учеными многихстран ведется упорная работа по созданию подобной аппаратуры.

ЗЕМНОВОДНЫЕ

Для изучения протеканияэлектричества в земноводных возмем опыт Гальвани. В своих опытах он использовалзадние лапки лягушки, соединенные с позвоночником. Подвешивая эти препараты намедном крючке к железным перилам балкона, он обратил внимание, что, когдаконечности лягушки раскачивались ветром, их мышцы сокращались при каждомприкосновении к перилам. На основании этого Гальвани пришел к выводу, чтоподергивания лапок были вызваны «животным электричеством», зарождающимся вспинном мозге лягушки и передаваемым по металлическим проводникам (крючку иперилам балкона) к мышцам конечностей. Против этого положения Гальвани о«животном электричестве» выступил физик Александр Вольта. В 1792 г. Вольта повторил опыты Гальвани и установил, что эти явления нельзя считать «животнымэлектричеством». В опыте Гальвани источником тока служил не спинной мозглягушки, а цепь, образованная из разнородных металлов – меди и железа. Вольтабыл прав. Первый опыт Гальвани не доказывал наличия «животного электричества»,но эти исследования привлекли внимание ученых к изучению электрических явленийв живых организмах. В ответ на возражение Вольта Гальвани произвел второй опыт,уже без участия металлов. Конец седалищного нерва он набрасывал стекляннымкрючком на мышцу конечности лягушки – и при этом также наблюдалось сокращениемышцы. В живом организме осуществляется и ионная проводимость.

Образованию и разделениюионов в живом веществе способствует наличие воды в белковой системе. От негозависит диэлектрическая постоянная белковой системы.

Носителями зарядов в этомслучае являются ионы водорода - протоны. Только в живом организме все видыпроводимости реализуются одновременно.

Соотношение между разнымипроводимостями меняется в зависимости от количества воды в белковой системе.Сегодня люди еще не знают всех свойств комплексной электропроводности живоговещества. Но ясно то, что именно от них зависят те принципиально отличныесвойства, которые присущи только живому.

На клетку воздействуютразличные факторы внешней среды - раздражители: физические - механические,температурные, электрические.

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

Электрические процессы в живых организмах

Боголюбова Александра Евгеньевна, студентка 1 курса

Руководитель : Мокрова Ирина Иннокентьевна, преподаватель физики

Образовательная организация: ГБПОУ Московский технологический колледж

2015г

г.Москва

Содержание

Введение.

2.Электрические токи в живых организмах

2.1. Электрические рыбы

2.1.1.Электрический угорь

2.1.2.Электрический сом

2.1.3.Электрический скат

2.3.1.Общая характеристика действия тока на тело человека

2.3.5. Действие зарядов лейденской банки на человека

2.3.6. Изобретение дефибриллятора постоянного тока

2.3.7. Электролечение

2.3.8.Метод Фолля

Заключение

Введение

С давних времен человек пытался понять явления в природе. Много гениальных гипотез, объясняющих происходящее вокруг человека, появилось в разное время и в разных странах. Мысли греческих и римских ученых и философов, живших еще до нашей эры: Архимеда, Евклида, Лукреция, Аристотеля, Демокрита и других - и сейчас помогают развитию научных исследований.

Способность некоторых животных вырабатывать электричество известно давно. Но природа проявления электрических явлений в живых организмах стала объектом наблюдения двести лет назад. И до сих пор некоторые явления, происходящие в живых организмах, недостаточно изучены. В нашей работе мы попытались систематизировать случаи проявления электрических взаимодействий в животной и растительной среде, проследить историю создания лейденской банки и ее дальнейшее использование в медицине.

1. История открытия животного электричества

1.1. Открытие Луиджи Гальвани

Всем известно что электричество вошло в нашу жизнь благодаря животным. С электрическими явлениями древние египтяне были знакомы еще четыре с половиной тысячи лет назад. Об этом свидетельствует надгробный памятник в Соккаре, на котором изображен электрический сом, живущий в верховьях Нила. Но лишь в итальянский профессор анатомии обнаружил, что электрические разряды заставляют подергиваться конечности мертвой лягушки. Это событие произошло отчасти случайно. Рассказывают, что синьоре Гальвани, жене болонского профессора анатомии, приходилось самой ходить в мясную лавку, где продавались и лягушачьи окорочка. История утверждает, что лягушачьи лапки, развешанные гроздьями на медных крючках, прикрепленных к железным перекладинам, поразили воображение синьоры Гальвани. К ее великому удивлению и ужасу, отрезанная лапка лягушки, касаясь железа, вздрагивала, точно живая. Утверждают, будто синьора так надоела мужу, рассказывая о напугавшем ее явлении, объясняя его близостью мясника с нечистой силой, что профессор решил провести наблюдения за лягушками у себя дома

В один из осенних вечеров 1789 г. итальянский естествоиспытатель и врач Луиджи Гальвани (1737-1798) делал опыты над мышцами лягушки. Особенно его интересовало действие на мускулы ног животного электрических разрядов, которые получали тогда от электрофорной машины. Препарированная лягушка (со снятой кожей) подвешивалась на медном крючке. Как только в мышцу конечности пропускали электрический разряд, мышца вздрагивала, сокращалась, лапка подпрыгивала.

Каково же было удивление ученого, когда он заметил, что сокращение мышц происходит и без воздействия электрических разрядов, а просто от соприкосновения с ножом, скальпелем или железной проволокой. Явление казалось загадочным.

После долгих поисков ему удалось доказать, что лапка лягушки сокращается и без всякого соприкосновения с металлом. Из тщательно поставленных опытов был сделан неоспоримый вывод, что в животных тканях образуется и собственное электричество. Классические опыты Гальвани сделали его отцом электрофизиологии. Гальвани, осуществив ряд экспериментов, пришел к выводу о существовании нового источника и нового вида электричества. Его привели к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов (лучше всего по признанию самого учёного было использовать разные металлы, например железный ключ и серебряную монету) и лягушечного препарата.

После долгих научных изысканий Гальвани предположил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передается по нервам. Именно так и была рождена теория животного электричества, именно эта теория создала базу для возникновения электромедицины, и открытие Гальвани произвело сенсацию.

1.2.История изобретения первого источника постоянного тока

Вскоре этими вопросами заинтересовался другой итальянский ученый Алессандро Вольта (1745-1827).Вольта провёл ряд опытов и показал, что наблюдаемые явления связаны с наличием замкнутой цепи, состоящей из двух разнородных металлов и жидкости. Вольта считал причины «гальванизма» физическими, а физиологические действия – одними из проявлений этого физического процесса. Проведя опыты с разными парами электродов, Вольта установил, что физиологическое раздражение нервов тем сильнее, чем дальше отстоят друг от друга два металла в следующем ряду: цинк, оловянная фольга, олово, свинец, железо, латунь и т.д. до серебра, ртути, графита. Этот знаменитый ряд напряжений (активностей) Вольта и составлял ядро эффекта; мышца лягушки была лишь пассивным, хотя и очень чувствительным электрометром, а активными звеньями являлись металлы, от контакта которых и происходила их взаимная электризация.

Проводя многочисленные сравнительно-физиологические опыты, Вольта наблюдал у животных большую электрическую возбудимость нервов по сравнению с мышцами, а также гладкой мускулатуры кишечника и желудка по сравнению со скелетной. Он обнаружил (1792-1795) электрическую раздражимость органов зрения и вкуса у человека. Эти работы имели большое значение в истории методов физиологического эксперимента.

В 1800 г. Вольта изобрёл так называемый Вольтов столб – первый источник постоянного тока, состоявший из 20 пар кружочков из двух различных металлов, разделённых смоченными солёной водой или раствором щёлочи прослойками ткани или бумаги. Изобретение вольтова столба доставило Вольта всемирную славу и оказало огромное влияние не только на развитие науки об электричестве, но и на всю историю человеческой цивилизации. Вольтов столб возвестил о наступлении новой эпохи – эпохи электричества. Позднее такие элемен¬ты стали называть гальваническими.

Вольта был избран членом Парижской и других академий, Наполеон сделал его графом и сенатором Итальянского королевства. Именем Вольта названа единица электрического напряжения – вольт.

рис.1.Вольтов столб

Установив это, ученый изобрел первую электрическую батарею постоянного тока – Вольтов столб, который состоял из 20 пар медных и цинковых кружков, разделенных картонными прокладками, смоченными кислотой. Положительным электродом в этой батарее служил кружочек из меди, отрицательным – кружочек из цинка. Позднее такие элементы стали называть гальваническими.

Предоставим слово современнику той поры - выдающемуся французскому ученому Араго, написавшему биографию Вольты:

"В начале 1800 года вследствие теоретических соображений знаменитый профессор придумал составить длинный столб из кружков: медного, цинкового и мокрого суконного. Чего ожидать заранее от такого столба? Это собрание, странное и, по-видимому, бездействующее, этот столб из разнородных металлов, разделенных небольшим количеством жидкости, составляет снаряд, чуднее которого никогда не изобретал человек, не исключая даже телескопа и паровой машины".

Он поставил следующий эксперимент: четырех своих помощников он поставил на смолу, чтобы изолировать от земли. Первому из стоящих велел взять в мокрую правую руку цинковую пластинку, а левой коснуться языка своего соседа. Тот, в свою очередь, должен был мокрым пальцем коснуться глазного яблока следующего. Третий и четвертый держали в руках свежепрепарированную лягушку. И кроме того, у четвертого в свободной мокрой руке была зажата серебряная пластинка. Когда серебро касалось цинка, язык второго чувствовал кислый вкус, в глазу у третьего вспыхивало световое пятно, лапки лягушки между третьим и четвертым начинали дергаться. Превосходный результат! Разве не доказывает он, что никакого "животного электричества" не существует? Все дело в контакте различных металлов.

После статьи в "Физико-медицинском журнале" в 1794 г., где он утверждал, что надо говорить не о "животном" электричестве, а об электричестве "металлическом", оставалось дожидаться только одного: появления технического устройства из металлов, генерирующего электрический ток. Но идеи подобного устройства у Вольты в то время не было. Прошло пять лет, наполненных опытами, дискуссиями, размышлениями, сомнениями. Но вот в самом конце 1799 г. Вольта изготавливает источник электрического тока из двух разнородных металлов, разделенных влажным телом. Это был вольтов столб.

В Парижской академии наук организовали специальную комиссию по изучению гальванизма. В нее вошли самые известные ученые. Они соорудили по описаниям вольтов столб и повторили все эксперименты итальянского исследователя перед его приездом. Погрузив один из концов "электродвигательного прибора" в воду и присоединив к другому его концу металлическую проволоку, академики засовывали руку в чашку с водой и одновременно прикладывали второй электрод к языку, к веку, к кончику носа или на лоб. В момент замыкания цепи следовал такой удар, что некоторые чуть не лишались языка. Но... наука требует жертв. Ощущения были настолько неожиданными! При наложении проволоки на веко создавалось ощущение вспышки. А когда два электрода от противоположных полюсов батареи вставляли в уши, в голове раздавался шум... "Это было нечто вроде треска или лопанья, как если бы кипело какое-то масло или вязкое вещество", - писал сам Вольта. Он полагал, что в дальнейшем его прибор сможет послужить медикам для излечения болезней. Другого применения гальваническому электричеству он не представлял.

После опытов Гальвани ученые заинтересовались и “животным” электричеством, как его назвал Дюбуа Реймон (1818-1896). И. М. Сеченов (1829-1905), А. Ф. Самойлов, Б. Ф. Вериго и другие русские физиологи внесли значительный вклад в изучение этого интересного явления. В 1881 г. И. М. Сеченов в спинном и головном мозгу лягушки обнаружил так называемые спонтанные (сами собой возникающие) электрические колебания.

В 1882 г. Знаменитый русский физиолог Н. Е. Введенский впервые в мире с помощью телефона услышал биоэлектрические токи, возникающие в мышцах и нервах человека.

По мере того как совершенствовались электроизмерительные приборы, электрические токи (или биотоки) обнаруживались у все большего числа животных и растений. Из отдельных работ выросла специальная научная дисциплина – электрофизиология.

2..Электрические токи в живых организмах

2.1. Электрические рыбы

Люди узнали про электрических рыб довольно давно: ещё в Древнем Египте для лечения эпилепсии использовали электрического ската, анатомия электрического угря подсказала Алессандро Вольте идею его знаменитых батарей, а Майкл Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов – 2250 квадратных метров.

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Рыбы используют разряды:чтобы освещать свой путь;для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки – американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду и рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле.С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля. По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектрические и воспринимающие

Сильноэлектрические

Слабоэлектрические

Воспринимающие

Электрический угорь до 600 в

Электрический сом до 350 В

Электрический скат

Рыба-нож

Рыба-слон

Акулы

большинство скатов

Коньки

большинство сомов

Веслонос

2.1.1.Электрический угорь

Электрический угорь - рыба из , единственный вид рода Electrophorus . Населяют реки северо-восточной части и притоки среднего и нижнего течения .

Еще первые завоеватели Америки нашли свою смерть в непроходимых лесах и болотах Южной Америки. Но это не останавливало жадных до золота авантюристов. В джунгли отправлялись все новые и новые экспедиции.

Одному из таких отрядов удалось проникнуть в верховье Амазонки. Несколько месяцев плыли люди по реке, прежде чем достигли ее истоков. Дальше плыть стало невозможно, и отряд двинулся в джунгли по суше. Дорогу преграждали непроходимые заросли, страшные топкие болота. Все шло хорошо, пока отряд не достиг цепочки соединенных между собой мелких луж. Индейцы носильщики категорически отказались войти в воду. В глазах их отражался ужас. Европейцы никак не могли понять, в чем дело. Лужи были такие мелкие, что в них не могли прятаться ни крокодилы, ни гигантские анаконды. Гроза южноамериканских рек - рыбы пираньи также не могли здесь оказаться.

Один из европейцев пошел вперед, чтобы подать пример испуганным носильщикам. Но едва он сделал несколько шагов, как с нечеловеческим криком рухнул навзничь, точно сбитый с ног могучим ударом. Два товарища, бросившиеся ему на помощь, в ту же секунду оказались в грязи, опрокинутые все тем же невидимым противником. Лишь через час их спутники отважились осторожно войти в воду и вынесли на сушу пострадавших товарищей. Все трое остались живы, но продолжать путь отряд уже не мог. У жертв невидимого врага были парализованы ноги. К вечеру ноги понемногу начали двигаться, но только через несколько дней больные окончательно выздоровели. Отряд решил вернуться назад. Так впервые европейцы узнали еще об одной подводной электростанции, которая находится в теле довольно крупной рыбы – пресноводного угря. Теперь эти рыбы получили название электрических угрей. Размеры их 1,5 - 2 метра, а вес 15 - 20 килограммов. Живут они в мелких ручьях и болотах. Когда болота пересыхают, угри зарываются в ил, пока не наступит следующий сезон дождей.

Кожа у электрического угря голая, без чешуи, тело сильно удлинённое, округлое в передней части и несколько сжатое с боков в задней части. Окраска взрослых электрических угрей оливково-коричневая, нижняя сторона головы и горла ярко-оранжевая, край анального плавника светлый, глаза изумрудно-зелёные. Питается угорь в основном, мелкой рыбешкой. Электрический угорь - опаснейшая рыба среди всех электрических рыб. . В тех местах, в которых живет угорь, чаще всего большой недостаток кислорода. Поэтому у электрического угря появилась особенность поведения. Под водой угри находятся около 2 часов, а потом выплывают на поверхность и дышат там в течение 10 минут, тогда как обычным рыбам достаточно всплывать на несколько секунд. Электрический угорь агрессивен. Может напасть без предупреждения, даже если никакой угрозы для него не существует. Если что-то живое попадет в зону действия его силового поля, то угорь не станет прятаться или уплывать прочь. Электрические органы помогают угрю искать добычу: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 - 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри способны воспринимать электрические разряды друг друга - во всяком случае, когда один из них ударом электрического тока парализует жертву, к добыче устремляются и другие угри..

Европейцы знакомы с электрическим угрем с 1729 года. Английский ученый Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов – 2250 квадратных метров.

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.

Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Приблизившись к преследуемой жертве, угорь разряжает свой парализующий удар, действие которого до того сильно, что в одно мгновение все рыбы и крабы в районе распространения этого удара опрокидываются навзничь и становятся неподвижными. Тогда он выбирает себе подходящую жертву и проглатывает ее с помощью сильного всасывающего движения, производящего явственный шум.

Обращение с электрическим угрем - дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь начал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить коробку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока. . Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии. Почти 4/5 длины всего тела занято электрическими органами, которые тянутся от заднего конца полости тела до конца хвоста, и на них приходится треть общего веса. Электрический орган, студневидная ткань, разделенная соединительными перегородками, занимает большую часть тела этой удивительной рыбы: до 5/6 ее длины и 3/8 веса. Положительный полюс – у головы, отрицательный – у хвоста. Собственно, электрических органов у угря всего до полумиллиона – это миниатюрные клетки, производящие электричество, соединенные нервами последовательно, благодаря этому разряд трехметрового угря достигает 650 вольт. Электрические клетки-пластинки сложены столбиками, которые соединены между собой параллельно, что увеличивает общую силу тока до двух ампер, а мощность – до киловатта!

Рис. 2. Клетки угря под микроскопом

Электрические разряды угря различны в зависимости от назначения. Они подразделяются на импульсы покоя, поиска, лова и защиты. Угорь, спокойно лежащий на дне, не генерирует электрических сигналов. Если угорь голоден, он медленно плавает, регулярно посылая импульсы напряжением до 50 В и длительностью около 2 мс. Количество таких разрядов может сильно варьировать, а форма импульсов характеризуется пологим (постепенным) подъемом. Когда угорь обнаруживает добычу, частота и амплитуда импульсов резко увеличиваются. Он начинает испускать серии из 50-400 импульсов напряженностью 300-600 В, продолжительностью 0,6-2,0 с. Чем меньше добыча, тем выше частота следования генерируемых импульсов. Он посылает импульсы до тех пор, пока не приводит жертву в состояние наркоза. Этого достаточно что бы парализовать большинство рыб, и даже животное размером с лошадь.Между разрядами наступают продолжительные паузы, во время которых энергия восстанавливается.


Рис.3.Электрический угорь

Рис. 4. Разряд электрического угря

Защитные импульсы угорь использует при встрече с врагом. В экспериментальных условиях они возникают, если угря потревожить палочкой. При этом рыба излучает серии редких импульсов высокого напряжения - обычно два (в некоторых случаях до семи) - и три поисковых импульса небольшой амплитуды.

2.1.2.Электрический сом.

Электрический сом (лат. Malapterurus electricus) - вид придонных пресноводных рыб из рода Malapterurus семейства Электрические сомы (Malapteruridae), обитающих в тропических и субтропических водоёмах Африки. Электрического сома причисляют к сильноэлектрическим рыбам.

Ритс.5.Электрический сом

Это довольно крупная рыба: длина отдельных особей превышает 1 метр. Масса крупной особи может составить 23 кг. Тело вытянутое. Голова несёт три пары усиков. Глаза маленькие, светящиеся в темноте. Окраска довольно пёстрая: тёмно-коричневая спина, буроватые бока и желтоватое брюхо. По телу разбросаны многочисленные тёмные пятна, грудные и брюшные плавники розовые, хвостовой плавник с тёмным основанием и широкой красной или оранжево-красной оторочкой. Спинного плавника у электрического сома нет. Грудные плавники не имеют колючек. Эти рыбы обитают в бассейне Ниле и реках Западной Африки . Электрические сомы представляют большую опасность для человека, чем электрические скаты. Электрические органы сома способны производить электрические разряды, напряжение которых достигает 360 вольт. Если человек дотронется до тела сома, то может мгновенно погибнуть. Существуют рассказы о том, что пойманная рыба, которая пролежала на воздухе несколько минут (заснувшая) может производить электрические разряды, которые способны парализовать взрослого человека.

У сома хвост заряжен положительно относительно головы. Напряжение и сила тока в отдельных импульсах разряда электрического сома длиной свыше 80см могут достигать 250В и 0,5А.

Залпы, производимые сомом при захвате и заглатывании мелкой добычи, относительно коротки - в среднем они состоят из 71 импульса. Продолжительность залпов и количество составляющих их импульсов увеличиваются, если сом атакует более крупную жертву. Так, сом длиной 16 см при захвате рыбы длиной 5,5 см генерирует залп в 1297 импульсов при средней продолжительности залпа 24,8 с. Таким образом, сом в каждом конкретном случае «выбирает» наиболее оптимальный режим разрядной деятельности.

Рис. 6. Разряд электрического сома

Напряжение разряда электрического сома в воде может достигать 350 В при силе тока в десятые доли ампера. Максимальная разность потенциалов при этом образуется между головой и хвостом рыбы. После относительно мощных разрядов его электрические органы нагреваются. Характер разрядов теснейшим образом связан с условиями среды (температурой, освещенностью, временем года) и состоянием самой рыбы.

Полярность электрических полей у сома и угря различна. Впервые структуру таких полей и направление в них тока определил в 1838 г. Фарадей. У многих рыб (гимнарха, рыбыножа, гнатонемуса) голова заряжается положительно, хвост – отрицательно, а вот у электрического сома, наоборот, хвост – положительно, а голова – отрицательно.

2.1.3.Электрические скаты

Рис.7..Электрический скат

Электрический скат упоминается во многих легендах, дошедших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее - какое-то неведомое вещество. Существовало и еще одно поверье - будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови

Электрические скаты, обитающие и в умеренной, и в тропической зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические органы. Объятие смыкается, "электроды" разряжаются - и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов - это Torpedo nоbiliana, обитатель вод Северной Атлантики; в длину он достигает 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт - этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода - хороший проводник электрического тока.

Скаты излучают разряды залпами, в каждом из которых насчитывается 2-10 и более импульсов. Продолжительность каждого 3-5 мс В отличие от электрического угря скаты не испускают слабых импульсов. В 1960 г. на выставке, организованной английским Научным королев¬ским обществом в честь 300-летия со дня его основания, среди загадок природы, которые человеку предстоит раскрыть, демонстрировался обычный стеклянный аквариум с находящейся в нем рыбой -электрическим скатом. К аквариуму через металлические электроды был подключен вольтметр. Когда рыба была в покое, стрелка вольтметра стояла на нуле. При движении рыбы вольтметр показывал напряжение, идостигавшее при активных движениях 400 В. Надпись гласила: "Природу этого электрического явления, наблюдавшегося задолго до организации английского королевского общества, человек разгадать до сих пор не может".

В момент излучения мощных импульсов как вне, так и внутри тела сильноэлектрических рыб проходят токи высокого напряжения. Почему же эти рыбы не подвергаются действию собственных разрядов? Подобная невосприимчивость объясняется тем, что в их теле находятся особые «электропровода» - участки, отличающиеся от соседних более высокой электропроводностью. Так, у мраморного электрического ската сопротивление участков кожи, покрывающих электрические органы, в 3-4 раза ниже, чем сопротивление участков кожи, покрывающих другие органы. Электрический ток в основном проходит через эти участки, почти не воздействуя на остальные.

В родной стихии скат не реагирует на разряды благодаря высокой электропроводности морской воды. Если же ската вынуть из воды, каждый разряд будет вызывать непроизвольное сокращение его мускулатуры.

2.1.4.Слабоэлектрические рыбы

Слабоэлектрические рыбы излучают серии почти непрерывных и ритмичных импульсов. Напряжение тока, генерируемого слабоэлектрическими рыбами, измеряется десятыми долями вольта. По характеру разрядов все эти рыбы могут быть подразделены на две группы.

К первой относят рыб, у которых разряды регулярные, монофазные, с относительно большой длительностью импульсов (2-10 мс). Частота следования импульсов варьирует от 60 до 940 в секунду. Среди рыб этой группы наиболее изучен гимнарх.

Рис.8 Гимнарх

Его разряды состоят из электрических импульсов, непрерывно следующих друг за другом с частотой приблизительно 300 импульсов в секунду. Импульсы гимнарха можно зарегистрировать и вне воды, если держать рыбу в воздухе, а электроды наложить непосредственно на кожу. Частота излучения электрических импульсов у гимнарха меняется только при изменении температуры воды (раздражение и физиологическое состояние не оказывают влияния). Наиболее четко проявляются разряды при температуре воды 28°.

Рис.9.Электрическое поле гимнарха (вид сверху).Рис 10. Одиночные импульсы гимнарха

Излучаемые гимнархом разряды состоят из отдельных монофазных импульсов длительностью 1,3 мс с интервалами 2,3 мс (рис. 10). Хвост рыбы становится электроотрицательным относительно головы. Разность потенциалов, возникающих на хвосте и голове,- сотые доли вольта.

Каждый разрядный импульс образует вокруг гимнарха характерное электрическое поле (рис. 9), оно расположено горизонтально по оси тела. Поле у головы и хвоста рыбы несимметрично - вокруг головы более растянуто, что обусловлено расположением электрических органов на хвосте гимнарха.

Наиболее типичный и хорошо исследованный представитель этой группы - африканский слоник. Его разряды состоят из отдельных двухфазных синусоидальных импульсов, амплитуда и частота следования которых зависят от степени возбуждения рыбы и факторов окружающей среды: температуры, освещенности, солености воды, присутствия различных объектов (рис. 10). Частота следования импульсов колеблется от 5 до 50 в секунду.


Рис.11.Африканский слоник. Рис 12.Импульсы африканского слоника

2.2. Электрические явления в мире растений

Электрические явления растений изучены на сегодняшний день недостаточно. Электрические импульсы растений - все еще весьма новая область исследований. В ней многое неизвестно, поэтому можно привести лишь одиночные примеры

Способность растений к опылению известно со времен Чарлза Дарвина. Одни цветки привлекают насекомых яркой окраской своих лепестков, другие - своим запахом, третьи имитируют образ привлекательных для спаривания насекомых... И вот новое открытие!

Группа ученых бристольской школы биологических наук (Bristol"s School of Biological Sciences) под руководством профессора Дэниела Роберта (Daniel Robert) обнаружила, что у растений есть своя система электрических сигналов, которая помогает им привлекать опылителей.

Известно, что растения окружены слабым электрическим током и несут отрицательный заряд. Шмели же несут на себе положительный заряд до 220 вольт. Из-за трения в воздухе о частицы взвешенной пыли они теряют часть своих электронов, поэтому, при подлете к цветку, возникает лишь небольшая электрическая сила, которая может передавать определенную информацию.

Ученые поместили в стеблях полусотни петуний электроды и обнаружили, что, когда пчела приземляется на цветок, его заряд на несколько минут становится положительным. Исследователи предполагают, что таким образом растение сообщает другим пчелам, что его нектаром уже полакомились. С другой стороны ученые были удивлены тем, что главным привлекающим фактором для насекомых является вовсе не аромат цветка, а его электрическое поле. Это выяснилось в результате следующего эксперимента.

Шмелей запустили на площадку с искусственными цветами. Одни из них имели положительный заряд и были обработаны сахарозой (аналог нектара). Другие цветки были заземлены и имели горький "нектар".Первоначально шмели садились на цветки с электрическим зарядом и сахарозой. Когда искусственные цветки отключили от электричества, шмели стали садиться на "сладкие" и "горькие" цветки в произвольном порядке. К тому же, вероятно, электрическое поле цветка усиливает для насекомого и привлекательность окраски его лепестков. Ученые собираются доказать, что способностью к электрорецепции обладают не только шмели, но также бабочки и мотыльки.

Первые бесспорные доказательства существования электрических процессов в растительных тканях были получены в середине XIX в. Так называемые токи повреждения обнаружились в различных растительных тканях. Срезы листьев, стебля, клубней всегда заряжены отрицательно по отношению к нормальной ткани.Если разрезать яблоко пополам и вынуть середину, то оба электрода, приложенные к кожуре, не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой перенести во внутреннюю часть мякоти, гальванометр отметит появление тока повреждения.

Выяснилось, что в момент гибели некоторых растительных тканей их потенциал резко возрастает. Индийский исследователь Бос соединил внешнюю и внутреннюю части зеленой горошины с гальванометром и затем нагрел ее до температуры 60 °С. При этом был зарегистрирован электрический потенциал 0,5 В!

Были открыты электрические ритмы растений. Если поместить кончик корня молодого бобового растения в воду и измерить разность потенциалов между корнем и наружной средой, то эта величина колеблется с периодом 5 - 20 мин, причем амплитуда колебаний уменьшается по мере удаления от ко нчика корня, а частота сильно зависит от температуры окружающей средыСпособность многих цветов и листьев складываться или раскрываться в зависимости от времени суток также обусловливается электрическими сигналами, представляющими собой потенциал действия. Закрытие листьев можно стимулировать искусственно с помощью электрического раздражения.

Известна реакция многих цветов на механические раздражения - выделение нектара. Оказалось, что при механическом раздражении некоторых частей цветка возникают электрические импульсы, передающиеся по железистым клеткам в проводящие пучки, и, достигая нектарника, стимулируют его деятельность. Реакция нектарника очень быстрая: выделение нектара начинается сразу же после того, как насекомое садится на цветок.

Движения листьев мимозы тоже управляются с помощью электрической системы сигнализации. Бос установил, что если сочленовую подушечку мимозы раздражать короткими импульсами электрического тока, ее реакция (механическое движение) будет не мгновенной, а с запаздыванием на 0,1 с. Такая скорость реакции сравнима со скоростью реакции многих животных. Время складывания листа составляет около 3 с. После непродолжительного покоя лист начинает подниматься. Возвращение листа в исходное состояние занимает около 16 с. Если последовательные раздражения осуществлять слишком часто, наступает утомление - как и при раздражении мышцы животного.

2.3. Эффекты действия токов в теле человека

Тело человека – хороший проводник электрического тока. Сопротивление тела человека при нормальном кожном покрове составляет 3 – 100 кОм. Безопасным является электрический ток, длительное прохождение которого не причиняет организму вреда и не ощущается человеком.

По технике безопасности величина силы тока не должна превышать 50 мкА.

Человек способен ощущать электрический ток от 1 мА. Опасным ток становится - 0,01А(переменный), 0,05А (постоянный ток).При таком воздействии током человек способен разорвать электрическую цепь. Если сила тока выше данных значений, то для человека,это становится смертельно опасной Электропроводность кожи, через которую ток проходит главным образом по каналам потовых и отчасти сальных желез, зависит от трещин и состояния ее поверхностного слоя. Тонкая и особенно влажная кожа, а также кожа с поврежденным наружным слоем эпидермиса хорошо проводит ток. Наоборот, сухая огрубевшая кожа - весьма плохой проводник. Электрический ток, проходя через организм человека, возбуждает живые ткани организма. Степень возникающих изменений зависит от силы тока и его вида (переменный или постоянный).

Классификация токов по степени воздействия на человека

Воздействие, ощущение

Переменный, мА

Постоянный, мА

1. Предел ощущения (легкое покалывание)

0.6 – 1.2

5 – 8

Допустимый

2. Ощущаемый ток (острая боль, но можно оттолкнуть, отбросить токоведущую часть)

8 – 10

20 – 25

3. Не отпускающий (происходит судорожное сжатие мышц, человека необходимо отрывать от токоведущих частей)

20 – 25

50 – 80

Недопустимый

4. Фибриляционный электрический ток (смертельно опасный: нарушение работы сердца)

50 –100

250

2.3.2.Открытие лейденской банки

Лейденская банка- один из видов электрических конденсаторов,называется иногда банкой Клейста. Его электрическое действие впервые было апробировано на человеке. Лейденская банка была изобретена почти одновременно немецким физиком Клейстом и голландским физиком Мушенбруком в 1745 - 1746 гг. Свое название она получила по имени города Лейдена, где Мушенбрук впервые проделал с ней опыты по изучению электрических явлений.

Рис.13. Лейденская банка Рис.14..Первоначальная форма лейденской банки

Этот конденсатор имеет форму банки(рис.14), т. е. цилиндра с более или менее широким горлом или же просто цилиндра, обыкновенно стеклянного. Банка обклеена листовым оловом снаружи и внутри (наружная и внутренняя обкладки) примерно до 2 / 3 высоты и прикрыта деревянной крышкой, сквозь которую проходит проволока с цепочкой, частью ложащейся на дно банки, тоже оклеенное оловом внутри и снаружи. Такова была банка в первоначальном виде, когда ее устроил (1745) голландский физик Мушенброк и когда впервые испытал удар от разряда банки лейденский гражданин Кунеус.

.

Рис.14 . Голландский физик Питер Мушенброк

Мушенбрук так описывал свое изобретение в письме к французскому ученому Реомюру: «Хочу сообщить Вам новый, но ужасный опыт, который не советую повторять. Я занимался изучением электрической силы. Для этого я подвесил на двух шелковых голубых нитях железный ствол, получающий электричество от стеклянного шара, который быстро вращался вокруг оси и натирался руками. На другом конце висела медная проволока, конец которой был погружен в стеклянный круглый сосуд, заполненный наполовину водой, который я держал в правой руке; левой же рукой я пытался извлекать из электрического ствола искру. Вдруг моя правая рука была поражена ударом с такой силой, что все тело содрогнулось, как от удара молнии.Несмотря на то что сосуд, сделанный из тонкого стекла, не разбивается и кисть руки обычно не смещается при таком потрясении, тем не менее локоть и все тело поражаются столь страшным образом, что я не могу выразить словами, я думал, что пришел конец».

В 1745 г. Эвальд Георг фон Клейст (1700 – 1748) уже 24-й год занимал должность декана (старшего священника) собора в маленьком городке Каммин в Померании. До этого он получил образование в университетах Лейпцига и Лейдена (Голландия), где обучался юриспруденции.

В свободное от служб в соборе время Клейст потихоньку ставил электрические опыты, используя в качестве источника электричества электростатическую машину. Однажды Клейст решил зарядить железный гвоздь. 11 октября 1745 г. он вставил его для изоляции в медицинскую склянку и поднес его к кондуктору работающей электростатической машины; спустя некоторое небольшое время гвоздь должен был зарядиться. Для того чтобы вытащить гвоздь из склянки, Клейст, держа склянку в одной руке, другой взялся за головку гвоздя и получил ощутимый электрический удар. Клейст наполнил склянку вначале спиртом, потом ртутью и повторил опыт. Удары усилились. Они приводили в содрогание всю руку и плечо.

Вскоре лейденская банка была усовершенствована: внешнюю и внутреннюю поверхность стеклянного сосуда стали обклеивать металлической фольгой(рис13). В крышку банки вставляли металлический стержень, который сверху заканчивался металлическим шариком, а нижний конец стержня при помощи металлической цепочки соединялся с внутренней обкладкой.

В июне 1772 года член Королевского общества и английского парламента сэр Джон Уолш приехал во Францию с лейденской банкой и дал местным рыбакам возможность ощутить прелесть ее физиологического воздействия, спрашивая при этом, схоже ли оно с воздействием нарковых скатов. Ответы были единодушно утвердительными. Воздействие ската передавалось через замкнутую цепь людей и прекращалось при малейших разрывах цепи или при включении в нее изоляторов.

За помощью в решении этого сложнейшего вопроса Джон Уолш обращается к самому легендарному физику Великой Британии - сэру Генри Кавендишу, человеку незадолго до этого экспериментально проверившему закон, который позже был назван именем Кулона. Кавендиш изготовил дипольную модель, имитирующую ската. Используя батарею из 49 лейденских банок, соединенных в семь параллельных столбов, удалось вызвать физиологический эффект от модели не только в воздухе, но и в морской воде.

Так в 1773 году Уолш с помощью Кавендиша доказал электрическую природу разрядов электрических рыб. Кавендиш предположил, что электрические органы представляют собой батарею из большого числа маленьких слабозаряженных лейденских банок. Описывая пути протекания токов в проводящей среде, он предложил идею силовых линий и первым изобразил электрическое поле ската. Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины это было первое сравнительно широкое практическое применена электричества, сыгравшее большую роль в углублении изучении электрических явлений.

Опыт Мушенбрука был преведен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было курьезно видеть разнообразие жестов и слышать мгновенный вскрик десятков людей». От этой цепи солдат и произошел термин «электрическая цепь».

При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного стоя. В 70-х гг. XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком - так, появился простейший конденсатор.

В 1746 г. профессор физики Лейпцигского университета Иоганн Генрих Винклер с большим энтузиазмом принялся повторять опыт с лейденской банкой. По окончании опыта он говорил, что у него были сильные конвульсии в теле и дважды кровотечения из носа, чего с ним прежде никогда не бывало. С его женой, тоже попробовавшей на себе действие зарядов лейденской банки, случилось то же самое.

2.3.4.Первые исследования действия тока на тело человека

Как мы видели выше, уже Мушенбрук, описывая изобретение лейденской банки, обратил внимание на сильное и необычное действие электрического разряда на человека.

Первые опыты по действию на тело электрического тока был выполнен племянником - Джованни Альдини. Прославился он тем, что смешал серьёзное исследование с леденящим душу зрелищем. Он практиковал так называемые электрические пляски, проявлявшиеся в форме публичных экспериментов, которые были призваны подчеркнуть эффективность электрического возбуждения для получения спазматических движений мускулов, для демонстрации этого использовались отсеченные головы казненных преступников. Он предложил вниманию широкой публики эксперимент над телом казненного убийцы Джорджа Форстера. . в Лондоне была его самая выдающаяся демонстрация, а именно гальванические экзерсисы с купленным телом повешенного убийцы. Он подсоединял полюса 120-вольтного аккумулятора к телу казненного убийцы Джорджа Форстера, после чего тело пустилось в омерзительный пляс. Когда он подсоединял провода к лицу, оно корчилось в жутких гримасах, левый глаз открывался, как будто хотел посмотреть на своего учителя. Некоторые зрители боялись, что преступник на самом деле оживет, и тогда придется казнить его снова. Газета London Times писала: «Несведущей части публики могло показаться, что несчастный вот-вот оживет».

Рис..15. Опыты Джованни Альдини

Вот как был описан этот опыт Альдини, одним из его современников: «Восстановилось тяжелое конвульсивное дыхание; глаза вновь открылись, губы зашевелились и лицо убийцы, не подчиняясь больше никакому управляющему инстинкту, стало корчить такие странные гримасы, что один из ассистентов лишился от ужаса чувств и на протяжении нескольких дней страдал настоящим умственным расстройством».

Вольта повторил перед Наполеоном опыты по оживлению отрезанных членов с помощью малых количеств электричества. "Я делал их не только над лягушками, но и над угрями и над другими рыбами, над ящерицами, саламандрами, змеями и, что важнее, над мелкими теплокровными животными, именно над мышами и птицами", - писал ученый в 1792 году, в самом начале исследований, приведших в итоге к великому изобретению. Представьте себе разнообразные отрезанные части различных животных, лежащие совершенно недвижно, как и подобает отрезанным членам, из коих вытекла жизненная сила. Малейшее прикосновение Вольтова столба - и плоть оживает, трепещет, сокращается и содрогается. Были ли в истории науки опыты, более потрясающие воображение?

В 1801 году в Париже произошло яркое событие, неоднократно описанное историками науки: в присутствии Наполеона Бонапарта состоялось представление работы "Искусственный электрический орган, имитирующий натуральный электрический орган угря или ската" с демонстрацией модели этого органа. Наполеон щедро наградил автора: в честь ученого была выбита медаль и учреждена премия в 80 000 экю. Все ведущие научные общества того времени, включая Петербургскую академию наук, изъявили желание видеть его в своих рядах, а лучшие университеты Европы были готовы предоставить ему свои кафедры. Позднее он получил титул графа и был назначен членом сената Королевства Италия. Речь идет об Алессандро Вольте и его изобретении - Вольтовом столбе, прообразе всех современных батарей и аккумуляторов. Вскоре этим действием заинтересовались врачи. Возникла мысль о том, что в живом организме существуют электрические токи, которые играют в нем какую-то важную роль. Вместе с этим пришло убеждение о возможности применения электричества для лечения болезней.

С этой целью стали производить опыты по электризации людей, пропусканию через тело человека электрического тока и т. д.

В начале прошлого столетия известный французский ученый профессор Ледюк сделал замечательное открытие. Он установил, что прерывистый постоянный электрический ток умеренной силы, пропускаемый через головной и спинной мозг, не убивает животное, а приводит его в состояние глубокого сна с потерей подвижности и чувствительности. Это состояние было названо ученым электрическим наркозом. Наркотизирующий ток не опасен: если его выключить, животное быстро просыпается и кажется вполне нормальным.

Профессор Ледюк изобрел аппарат, главная деталь которого - особый прерыватель тока, проходящего через тело подопытного животного.

Испытав действие своего аппарата на животных, Ледюк решил испытать его пригодность для наркоза людей. Первый опыт он сделал на себе. Однако полного наркоза осуществить не удалось, так как сердце ученого начало плохо работать уже при силе тока в 4 миллиампера, а по расчету для наркоза требовалось не менее 7 миллиампер. Узнав о действии электронаркоза на сердце, Ледюк отказался от опытов на людях, решив, что аппарат и сама методика еще недостаточно усовершенствованы, и стал производить систематические эксперименты на животных.

Однако опыты на людях производились другими учеными. Замечательнее всего оказалось, что тот же, обычно наркотизирующий, ток в некоторых случаях был способен восстанавливать жизнедеятельность организма.

В 1787 г. английский врач и физик Адаме впервые создал специальную электростатическую машину для лечебных целей. Ею он широко пользовался в своей медицинской практике (рис. 16) и получал положительные результаты, которые можно объяснить и стимулирующим действием тока, и психотерапевтическим эффектом, и специфическим действием разряда на человека.

Эпоха электростатики и магнитостатики, к которой относится все, о чем говорилось выше, завершается разработкой математических основ этих наук, выполненной Пуассоном, Остроградским, Гауссом.

Рис. 16. Сеанс электролечения (со старинной гравюры)

Использование электрических разрядов в медицине и биологии получило ши рокое обсуждение и споры.

Интерес к использованию электричества в медицине возрастал. Руанская академия объявила конкурс на лучшую работу

Слайд 2

История открытия электрического явления

Впервые на электрический заряд обратил внимание Фалес Милетский за 600 лет до н.э. Он обнаружил, что янтарь, потертый о шерсть, приобретет свойства притягивать легкие предметы: пушинки, кусочки бумаги. Позже считалось, что таким свойством обладает только янтарь. В середине XVII века Отто фон Гарике разработал электрическую машину трения. Кроме того, им было обнаружено свойство электрического отталкивания однополярно заряженных предметов, а в 1729 году английский ученый Стивен Грей обнаружил разделение тел на проводники электрического тока и изоляторы. Вскоре его коллега Роберт Симмер, наблюдая за электризацией своих шелковых чулок, пришел к выводу, что электрические явления обусловлены разделением на положительный и отрицательный заряд тел. Тела при трении друг о друга вызывают электризацию этих тел, то есть электризация – это накопление на теле заряда одного типа, причем заряды одного знака отталкиваются, а заряды разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным). В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Опыты, проведенные Дюфе, говорили, что один из зарядов образуется при трении стекла о шелк, а другой – при трении смолы о шерсть. Понятие о положительном и отрицательном заряде ввел немецкий естествоиспытатель Георг Кристоф. Первым количественным исследователем был закон взаимодействия зарядов, экспериментально установленный в 1785 году Шарлем Кулоном с помощью разработанных им чувствительных крутильных весов.

Слайд 3

Почему у наэлектризованных людей волосы поднимаются вверх?

Волосы электризуются одноименным зарядом. Как известно, одноименные заряды отталкиваются, поэтому волосы, подобно листочкам бумажного султана, расходятся во все стороны. Если любое проводящее тело, в том числе и человеческое, изолировать от земли, то его можно зарядить до большого потенциала. Так, с помощью электростатической машины тело человека можно зарядить до потенциала в десятки тысяч вольт.

Слайд 4

Оказывает ли электрический заряд, размещенный в таком случае на теле человека, влияние на нервную систему?

Человеческое тело - проводник электричества. Если его изолировать от земли и зарядить, то заряд располагается исключительно по поверхности тела, поэтому заряжение до сравнительно высокого потенциала не влияет на нервную систему, так как нервные волокна находятся под кожей. Влияние электрического заряда на нервную систему сказывается в момент разряда, при котором происходит перераспределение зарядов на теле. Это перераспределение представляет собой кратковременный электрический ток, проходящий не по поверхности, а внутри организма.

Слайд 5

Почему птицы безнаказанно садятся на провода высоковольтной передачи?

Тело сидящей на проводе птицы представляет собою ответвление цепи, включенное параллельно участку проводника между лапками птицы. При параллельном соединении двух участков цепи величина токов в них обратно пропорциональна сопротивлению. Сопротивление тела птицы огромно по сравнению с сопротивлением небольшой длины проводника, поэтому величина тока в теле птицы ничтожна и безвредна. Следует добавить еще, что разность потенциалов на участке между ногами птицы мала.

Слайд 6

Рыбы и электричество.

Рыбы используют разряды: чтобы освещать свой путь; для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия

Слайд 7

Самыми известными электрическими рыбами являются электрический угорь, электрический скат и электрический сом. У этих рыб имеются специальные органы для накопления электрической энергии. Небольшие напряжения, возникающие в обычных мышечных волокнах, суммируются здесь благодаря последовательному включению множества отдельных элементов, которые нервами, как проводниками, соединены в длинные батареи.

Слайд 8

Скаты.

«Эта рыба заставляет цепенеть животных, которых она хочет поймать, пересиливая их силой удара, живущего у нее в теле». Аристотель

Слайд 9

Сом.

Электрические органы расположены почти по всей длине тела рыбы, дают разряды напряжением до 360 В.

Слайд 10

ЭЛЕКТРИЧЕСКИЙ УГОРЬ

Самые мощные электрические органы у угрей, обитающих в реках тропической Америки. Их разряды достигают напряжения 650 В.

Слайд 11

Гром одно из грозных явлений.

Гром и молния – это одно из грозных, но величественных явлений, с которыми человек был еще готов с древности. Разбушевавшаяся стихия. Обрушивалась на него в виде ослепляющий гигантских молний, грозных громовых ударов, ливня и града. В страхе перед грозой люди обожествляли её, считая орудием богов.

Слайд 12

Молния

Чаще всего мы наблюдаем молнию, напоминающую извилистую реку с притоками. Такие молнии называют линейными, их длина при разряде между облаками достигает более 20км. Молнии других видов можно увидеть значительно реже. Электрический разряд в атмосфере в виде линейной молнии представляет собой электрический ток. Причем сила тока меняется за 0,2 – 0,3 секунды. Примерно 65% всех молний. Которые наблюдаются у нас имеют значение силы тока 10000 А, но редко достигают и 230 000 А. Канал молнии, через который протекает ток, сильно разогревается и ярко светит. Температура канала достигает десятков тысяч градусов, давление повышается, воздух расширяется проходит как бы взрыв раскаленных газов. Это мы воспринимаем как гром. Удар молнии в наземный предмет может вызвать пожар.

Слайд 13

При ударе молнии, например в дерево. Оно нагревается, влага из него испаряется, а давление образовавшегося пара и нагревшихся газов приводят к разрушениям. Для защиты зданий от грозовых разрядов применяют молниеотводы, которые представляют собой металлический стержень, возвышающийся над защищаемым объектом.

Слайд 14

Молния.

В лиственных деревьях ток проходит внутри ствола по сердцевине, где много сока, который под действием тока закипает и пары разрывают дерево.

Посмотреть все слайды

← Вернуться

×
Вступай в сообщество «hatewall.ru»!
ВКонтакте:
Я уже подписан на сообщество «hatewall.ru»